

Grenoble Alpes University Open Source Program Office

Official opening of the UGA OSPO

Grenoble Alpes University

Students

- 57,000 students, including 11,000 international students
- 150 nationalities

Staff

10,500 employees including 2,550 from national research organizations

Research

- 69 research centers and 1 teaching hospital
- All scientific disciplines
- 2,900 doctoral students

Synergies between research and industry

- International laboratories and instruments : ESRF, ILL, EMBL, GHMFL, IRAM
- National research organizations : CNRS, CEA, Inria, Inserm, INRAE, CRSSA, IRD, CHU Grenoble Alpes
- **Major companies**: Sun Microsystems, HP, Orange, STMicroelectronics, Schneider Electric, Alstom, Xerox, Thales...

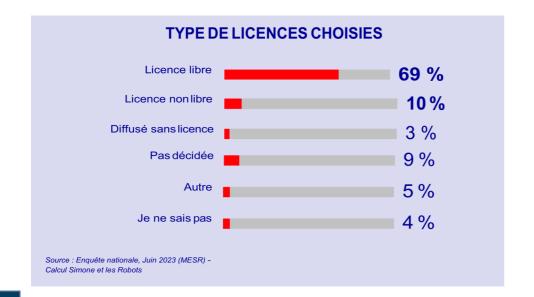
Grenoble Alpes University infrastructures: ecosystem for research

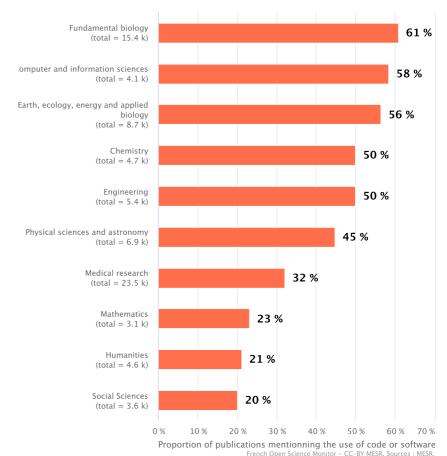
- Shared infrastructures play a key role for research
- Among them: computing centers the backbone of digital research
- A long history of sharing machines for intensive computing in Grenoble
 - Since 1998, a computing centre for all scientific communities in Grenoble
 - Integrated in 2016 into a structure dedicated to computing and research data: GRICAD
- And very close collaboration for several years between digital infrastructures and libraries
 - Around publications, research data, research software and the necessary link between all these objects

- From the very beginning, **software development** has been closely associated with **university computing centers**.
 - Most of the codes used on this computing center are home made codes
 - Numerous codes developed in research laboratories are open source
 - Computing centers are a meeting place for people who develop research codes.
 - They provided support and tools for researchers across all scientific disciplines.
 - They fostered communities and shared practices for software development.

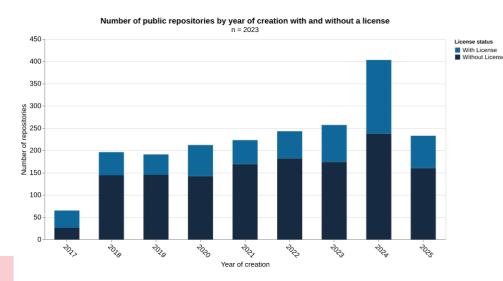
National context: evolution and good timing

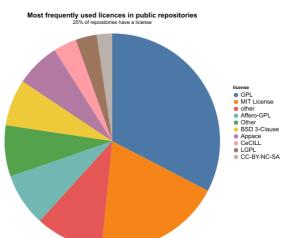
- Since 2021, the research software has been an **integral part of France's open** science policy.
- A variety of initiatives are being developed to secure and expand the role of software in all its **specific forms**.
- In particular, the creation of a dedicated **Software and Source Codes College** within the framework of the Committee for Open Science
 - With concrete actions such as the research open source software prizes and the French National Catalogue for Research Software
- But also, European projects within the framework of EOSC, the development of infrastructures such as Software Heritage
- And the beginning of recognition of software as research products alongside publications and research data.

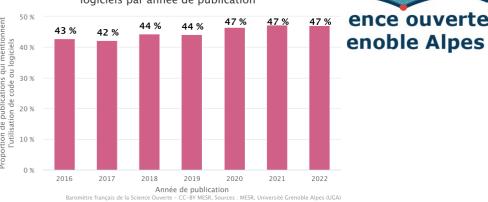



Challenges to be adressed

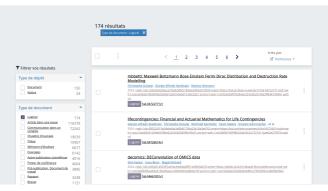
- Software is a pillar of research, alongside publications and data
- Software development for research concerns all disciplines
- Most software is open source




Proportion of publications in France published in 2023 that mention the use of code or software by discipline

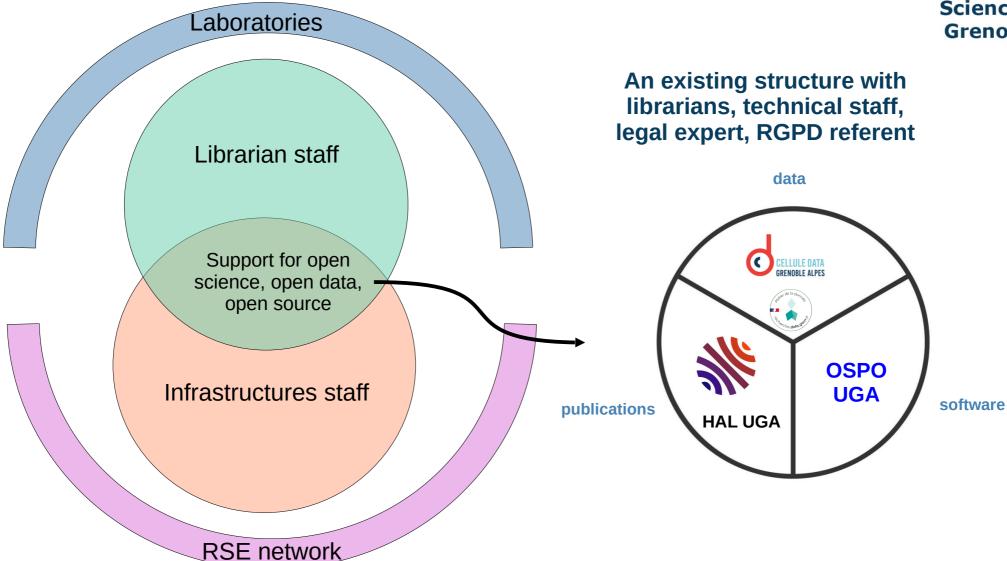

Research Software @UGA

- Some metrics of the importance of software development activity in laboratories
 - 174 software notices in the UGA's Open Archive Portal
 - ► 11000 users, 20000 projects (2600 public ones) on the gitlab forge of the university
 - Only about 40 % of the public projects with software have a licence!!
 - Nearly half of all publications mention the use of software



Université Grenoble Alpes (UGA) : Proportion de publications de l'université Grenoble Alpes qui mentionnent l'utilisation de code ou logiciels par année de publication

Open Science Barometer of UGA



Open Archive Portal of the University

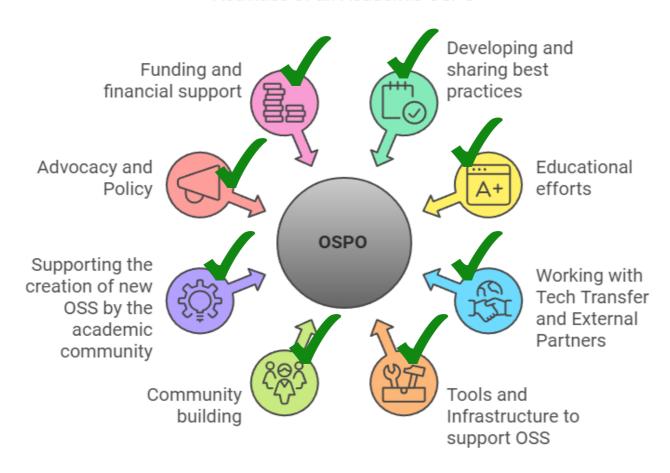
Coordination of site players

OSPO@UGA

- Support for the scientific community in software development related to High Performance Computing has existed since the creation of the computing center.
- It was naturally integrated when **research data support services** were developed in 2019.
- The Code Data Grenoble Alpes unit therefore brings together all services related to research data and research software.
 - It is made up of members from GRICAD (the computing center), the university libraries, and some research laboratories
 - It combines both technical and documentation expertise.
 - It was recognized as a Data Management Cluster in 2022 within the national ecosystem for research data, Recherche Data Gouv.
- Other key stakeholders play an important role:
 - The technology transfer and innovation services of the institutions on the site
 - The professional network of IT specialists on the site

OK but what is an academic OSPO?

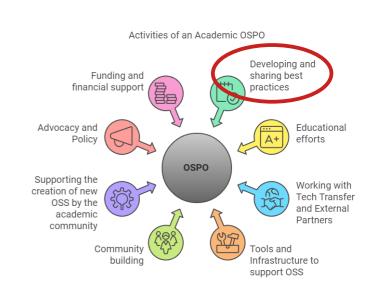
• **CURIOSS** (Community for University and Research Institution OSPOs) Definition:


An academic OSPO is defined as an organizational construct, situated in an academic research institution, supported by one or more individuals that acts as a convener, community steward, and center of competency for open source software.

- In general, an Open Source Program Office is an organizational function that helps coordinate and manage an organization's **open source strategy**, **policies**, **and activities**.
- OSPOs are quite common in **large companies**, and also increasingly so in public administrations.
- But emerging in academic area.

Activities of OSPO@UGA

Activities of an Academic OSPO



Developing and sharing best practices

- Best practices are a key aspect of open source development.
 - For yourself and for others.
 - Commit to the long term.
 - Essential for reproducibility and reusability.
 - And to encourage contributions.
- ✓ Facilitate communities of practice and exchange through various initiatives.

Developing and sharing best practices, some concrete actions

Software and open science information

https://scienceouverte.univ-grenoble-alpes.fr/codes-et-logiciels/

Support communities

Helpdesk: sos-codes-recherche@univ-grenoble-alpes.fr

Exchanges within and between communities

- Seminars
 - Example: IA4Dev, used of LLM for software development
- Mailing list
 - https://listes.univ-grenoble-alpes.fr/sympa/info/floss-uga

Some examples of requests on the helpdesk

- Questions about rights and licences:
 - Most of the time, which licence should I choose for my code?
 - ▶ But also more complex situations: my code has been developed with another colleague from another country, diffused under Apache 2.0 licence and has been finalised by an enterprise. What about the intellectual property?
 - **•** ...
- Organising a software project at the level of a research team:
 - Audit and implementation of common best practices for the whole team.
 - Support for dissemination and referencing.
- More technical issues:
 - Restructuring a Python code to make it open source: removing redundant imports (static analysis), ensuring licence compatibility, etc.
 - ► In progress: code audit, proposal to co-supervise an intern

Educational efforts

- Some authors of research code are not developers.
- **Training** is essential for implementing best practices and learning how to use the right tools.
- This applies at all levels and to all topics.
 - In particular, training young researchers is key to building a solid foundation.
- This training should also be made available more broadly, to technological transfert departments, libraries and anyone else who may be involved at some point.
- Content must be adapted to meet needs.

Activities of an Academic OSPO

Educational efforts: some concrete actions

Training doctoral students

- Digital module: git, gitlab, cmake, compilation, parallelisation
 - https://pole-calcul-formation.gricad-pages.univ-grenoble-alpes.fr/ced/plans_modules/
- Open science module: software (best practices, dissemination, legal issues, etc.), reproductibility
- https://scienceouverte.univ-grenoble-alpes.fr/ressources/formation-et-seminaires/formation-doctorale-2024/

Internal training

- Raising awareness among librarian colleagues of software-related issues.
- Raising awareness among support team of technological transfert.

Train on a large scale

- Floss@UGA thematic school about the legal framework of open source software (2025)
 - https://floss-uga-2025.sciencesconf.org/

Working with Tech Transfert and External Partners

- The technological transfert and legal departments play a key role in the area of software
- Some of them have relatively little overall expertise in the area of open source software.
- Close collaboration is essential to align them with laboratory practices.
- Non-academic and international links are particularly valuable for:
 - Gain a thorough understanding of the ecosystem.
 - Identify initiatives, best practices and tools.
 - And discuss and share ideas.
- Through OSPO UGA, participation in CURIOSS (international academic OSPOs), OSPO-FR (public administration OSPOs), link with OW2 (association of companies working with open source software), etc.

The working group will present its work immediately afterwards!

Activities of an Academic OSPO

Working with External Partners: some examples

OSPO-FR will be presented tomorrow!

CURIOSS

- Community of Academic OSPOs
- There are lots of valuable exchanges during monthly meetings and specific webinars.

CURIOSS will be presented tomorrow!

OSPO-FR

- Quite different needs but common issues
- Example of recent discussions around DCOs (Developer Certificate of Origin) and CLAs (Contributor Licence Agreements)

Non-academic

• Close links with OW2, of which INRIA and UGA are members

OW2 will be presented tomorrow!

Tools and Infrastructures to support OSS

- It is essential to provide tools and infrastructure that are tailored to the needs of communities.
- In particular, access to a software forge is crucial.
 - This must be provided with the right tools and support.
 - Cl/registry/GitLab pages are also important.
 - It should also have shared runners and accept private runners.
- Other relevant infrastructure includes notebook servers, BinderHub, etc., are also relevant.
- Needs for scientific computing, data analysis, and AI are most often associated with the development of open source software.
- It is also important to collaborate closely with the computing centre.

Tools and Infrastructures to support OSS: Site's Infrastructures

Forge

- Forge based on GitLab
- CI / Shared runners / Private runners
- GitLab pages
- Registry
- Immediate external accounts

HPC/AI

- OSPO/CDGA included in GRICAD
- Close collaboration with infrastructure teams
- Strong links with computing user communities that are heavily involved in open source development

Outlook

- Deployment of an LLM
- Fossology or other licence analysis tool
- Static code analysis

Cloud Infrastructure / K8

Private Runners with or without GPU

Community building

Science ouverte Grenoble Alpes

- Communities of practice and professional networks play an essential role in facilitating discussion and sharing beyond specific disciplines.
- There is significant overlap with OSPO activities.
- It is important to coordinate and combine certain efforts, particularly those relating to facilitation and training.

Activities of an Academic OSPO

SARI

Local professional network

SARI will be presented immediately afterwards!

Exchanges within and between communities

- Mailing list: https://listes.univ-grenoble-alpes.fr/sympa/info/floss-uga
- Coming soon: points of contact for Software in labs

Supporting the creation of new OSS by the academic community

- The software developed at UGA is mostly open source.
- However, there are not always well visible and are often not sustainable.
- It is important to capitalise on these developments.
- This can be achieved by implementing the best legal, technical, and organisational practices to encourage others to adopt them and to create communities.

Funding and financial support

Advocacy and Policy

OSPO

Working with Tech Transfer and External Partners

Community building

Tools and Infrastructure to

Activities of an Academic OSPO

Supporting the creation of new OSS by the academic community: some concrete current and future actions

Improve visibility.

- Encourage the creation of HAL records and move towards a UGA software catalogue. Highlight the importance of standards and moderation.
- Work on automating the extraction of information (Forge, Software Heritage, publications, etc.).
- Link codes, publications and data.

Develop training and support resources for community issues.

- Focus on tools such as Fossology and static code analysis.
- Help to initiate communities around specific codes by providing training on relevant tools and practices.

Legal issues.

 Working with UGA legal services to make documents available (DCO, CLA, etc.), licence recommendations

Advocacy and policy

Science ouverte Grenoble Alpes

- Adopting open science at an institutional level is an essential first step.
- In 2022, the University of Grenoble Alpes (UGA) voted on its open science charter and master plan, which included the **issue of software** alongside data and publications from the outset.
- The aim is to **build on this foundation** by promoting recommendations, particularly with regard to theses.
- The CDGA/OSPO makes proposals to the governance on these subjects and supports the ADAC (Administrateur des Données, des Algorithmes et des Codes Sources, Chief Research Data and Software Officer).

Funding and financial support

- From the outset of a project, it is important to consider the issue of open source code development.
- This enables clear identification of needs and associated costs.
- Showcasing the infrastructures and support available on the Grenoble site is a **key driver** for reinforcing the strength of a project.
- Collaboration with project support services is already in progress.

Conclusions

- Supporting the development of open-source software on a site like Grenoble is a multifaceted challenge.
- We must first be able to address both technical and legal questions.
 - The open-source world has its own framework that needs to be understood and colleagues need guidance to navigate it.
- Close collaboration with legal and technology transfer services is essential.
- Strong involvement is also required at the level of infrastructures and tools.
- Training as well as building and sustaining communities is at the heart of the effort.
- Finally, **complementary expertise** is key: technical, open-source, legal, librarian, and more